Home > Knowledge > Content
Imidacloprid Uses in Agriculture
Aug 14, 2018

Imidacloprid is the most widely used insecticide in the world. Its major uses include:

Agriculture - Control of aphidscane beetlesthrips,stink bugslocusts, and a variety of other insects that damage crops

Arboriculture - Control of the emerald ash borerhemlock woolly adelgid,and other insects that attack trees (including hemlockmapleoak, and birch)

Home Protection - Control of termites,carpenter antscockroaches, and moisture-loving insects

Domestic animals - Control of fleas (applied to the neck)[2]

Turf - Control of Japanese beetle larvae (exp. Grubs)

Gardening - Control of aphids and other pests

When used on plants, imidacloprid, which is systemic, is slowly taken up by plant roots and slowly translocated up the plant via xylem tissue.

Application to trees

When used on trees, it can take 30–60 days to reach the top (depending on the size and height) and enter the leaves in high enough quantities to be effective. Imidacloprid can be found in the trunk, the branches, the twigs, the leaves, the leaflets, and the seeds. Many trees are wind pollinated. But others such as fruit trees, linden, catalpa, and black locust trees are bee and wind pollinated and imidacloprid would likely be found in the flowers in small quantities. Higher doses must be used to control boring insects than other types.


Imidacloprid is a systemic chloronicotinyl pesticide, belonging to the class of neonicotinoid insecticides. It works by interfering with the transmission of nerve impulses in insects by binding irreversibly to specific insect nicotinic acetylcholine receptors.

As a systemic pesticide, imidacloprid translocates or moves easily in the xylem of plants from the soil into the leaves, fruit, pollen, and nectar of a plant. Imidacloprid also exhibits excellent translaminar movement in plants and can penetrate the leaf cuticle and move readily into leaf tissue.

Since imidacloprid is efficacious at very low levels (nanogram and picogram), it can be applied at lower concentrations (e.g., 0.05–0.125 lb/acre or 55–140 g/ha) than other insecticides. The availability of imidacloprid and its favorable toxicity package as compared to other insecticides on the market in the 1990s allowed the EPA to replace more toxic insecticides including the acetylcholinesterase inhibitors, the organophosphorus compounds, and methylcarbamates.